网上有关一途游四川麻将有没有挂(详细开挂教程)
网上有关“与基于51系列与基于ARM处理器的控制系统开发有何异同。”话题很是火热,小编也是针对与基于51系列与基于ARM处理器的控制系统开发有何异同。寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
您好:手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,咨询加微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的
1.手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,通过添加客服微信
2.咨询软件加微信【】在"设置DD功能DD微信手麻工具"里.点击"开启".
3.打开工具.在"设置DD新消息提醒"里.前两个选项"设置"和"连接软件"均勾选"开启"(好多人就是这一步忘记做了)
4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口)
(一)在ARM处理器中,子程序调用、异常中断和软件中断有何异同。(从应用场合、寄存器保护、地址的保护与返回和工作模式等方面比较)
ARM中子程序调用是用跳转指令B、BL或BX,跳转到程序计数器PC的指向处,产生程序分支。正常的子程序调用属于用户模式。ARM 处理器中PC是对程序员开放的,所以可以把分支和子程序调用看成同一种操作,因此没有专门的子程序调用指令。当使用BL指令跳转时,处理器自动把下一条指令的地址值拷贝到链接寄存器LR中。在执行跳转指令时,处理器并不保存状态寄存器CPSR。
处理器相应异常中断时,正常的程序流被暂时中止,处理器就进入异常,ARM中所有的异常都会引起中断。异常中断时处理器硬件自动把当前CPSR的状态存储到当前异常模式的特定SPSR中,以免中断处理程序在使用CPSR时改变原来的状态,从而对中断返回造成影响。进入异常中断处理程序时,应该保留中断时的程序地址,以便中断结束时,返回到中断的正常位置,执行下一条指令。异常中断有很多类型,因而不同的异常中断有不同的模式,中断返回时的指令也不同。中断返回时,程序需要一条指令把SPSR中的内容恢复到CPSR中,如MOV PC, LR,执行此指令时,处理器会自动把SPSR中保存的程序状态拷贝到CPSR中。异常中断时,处理器自动把中断处地址保存到相应模式下的LR (R14)中,大多数保存在LR中的地址是:
LR保存的值二PC的值一8,但也有特殊情况。
软件异常中断时一个很灵活的软件功能,和子程序调用不同,软件异常中断吧程序导入管理模式,软件中断是异常中断的一种类型。软件中断是由指令SWI引起的。程序在执行这一指令后,进入异常中断,处理器响应中断,硬件执行过程如下:把下一条指令的地址拷贝给LR;把程序状态寄存器CPSR拷贝给SPSR_svc;强制进入管理模式;强制进入到ARM状态;跳转到绝对地址Pc=0x00000008;禁止IRQ中断。软件中断处理程序完成后,使用下列指令返回到原中断处。
(二)与基于51系列单片机的控制系统开发相比,基于ARM处理器的控制系统开发有何异同。(从指令系统、工作模式、寄存器分布和外围器件等方面比较)
(1)指令系统:
①51系列单片机采用8位数据结构,指令--8位,数据--8位,51系列单片机中指令的取指、数据的读写只使用一个地址值;
②ARM处理器采用32位数据结构,指令--32位ARM指令(ARM模式),16位Thumb指令(Thumb模式)数据--32位、16位、8位,ARM处理器中,指令的取值使用四个地址单元(ARM 模式)指令的取值使用两个地址单元(Thumb模式),数据的读写读写使用4、2、1个地址单元。
(2)工作模式
①51系列单片机只有一种模式,所有资源所有情况下都可利用;
②ARM处理器具有多种模式(用户模式、快速中断模式、标准中断模式、管理模式、中止模式、未定义模式、系统模式),只有特权模式可以可以访问和修改某些资源,用户模式不能够访问被保护起来的资源(如不能访问某些程序存储区,不能改写某些存储区),因此用户程序不会对系统造成干扰。
(3)寄存器分布
ARM状态时,ARM处理器中一般可使用的通用寄存器是R0-R12,而51系列中共有4组R0-R12; ARM中所有寄存器都有累加器功能和间接寻址功能,通用寄存器比51系列强大一些。在51系列中,所有的重要功能指令都要用到累加器A,因此要不停地保护累加器A中数据,在ARM中不会出现这种清况。两者的程序计数器的使用极其意义是相同的,程序状态器含义是想近的,51系列中,程序状态一般是由累加器A决定的,因为A参与并保存操作结果;ARM处理器中,则是由参与操作的目标寄存器决定的。51系列中,堆栈指针是SP;而在ARM处理器中,堆栈指针是R13。
Thumb状态下的寄存器是ARM状态下寄存器的一个子集,Thumb状态所能访问的寄存器少一些,Thumb状态下的寄存器的定义及其使用和ARM状态时相同的。
(4)外围器件
ARM不是单片机,而只是一个单片机的内核,ARM仅仅是单片机中的中央处理器,它有自己的指令代码集,可以通过执行代码控制外部设备,给ARM处理器设计出各种外部设备,用总线连接到一起,就组成了不同结构和性能的单片机。
ARM处理器模式的ARM处理器状态
ARM处理器状态
ARM微处理器的工作状态一般有两种,并可在两种状态之间切换:
第一种为ARM状态,此时处理器执行32位的字对齐的ARM指令;
第二种为Thumb状态,此时处理器执行16位的、半字对齐的Thumb指令。
在程序的执行过程中,微处理器可以随时在两种工作状态之间切换,并且,处理器工作状态的转变并不影响处理器的工作模式和相应寄存器中的内容。但ARM微处理器在开始执行代码时,应该处于ARM状态。
ARM处理器状态
进入Thumb状态:当操作数寄存器的状态位(位0)为1时,可以采用执行BX指令的方法,使微处理器从ARM状态切换到Thumb状态。此外,当处理器处于Thumb状态时发生异常(如IRQ、FIQ、Undef、Abort、SWI等),则异常处理返回时,自动切换到Thumb状态。
进入ARM状态:当操作数寄存器的状态位为0时,执行BX指令时可以使微处理器从Thumb状态切换到ARM状态。此外,在处理器进行异常处理时,把PC指针放入异常模式链接寄存器中,并从异常向量地址开始执行程序,也可以使处理器切换到ARM状态。
ARM处理器模式
ARM微处理器支持7种运行模式,分别为:
用户模式(usr):ARM处理器正常的程序执行状态。
快速中断模式(fiq):用于高速数据传输或通道处理。
外部中断模式(irq):用于通用的中断处理。
管理模式(svc):操作系统使用的保护模式。
数据访问终止模式(abt):当数据或指令预取终止时进入该模式,可用于虚拟存储及存储保护。
系统模式(sys):运行具有特权的操作系统任务。
定义指令中止模式(und):当未定义的指令执行时进入该模式,可用于支持硬件协处理器的软件仿真。
ARM处理器模式
ARM微处理器的运行模式可以通过软件改变,也可以通过外部中断或异常处理改变。大多数的应用程序运行在用户模式下,当处理器运行在用户模式下时,某些被保护的系统资源是不能被访问的。
除用户模式以外,其余的所有6种模式称之为非用户模式,或特权模式;其中除去用户模式和系统模式以外的5种又称为异常模式,常用于处理中断或异常,以及需要访问受保护的系统资源等情况。
ARM寄存器
ARM处理器共有37个寄存器。其中包括:31个通用寄存器,包括程序计数器(PC)在内。这些寄存器都是32位寄存器。以及6个32位状态寄存器。
关于寄存器这里就不详细介绍了,有兴趣的人可以上网找找,很多这方面的资料。
异常处理
当正常的程序执行流程发生暂时的停止时,称之为异常,例如处理一个外部的中断请求。在处理异常之前,当前处理器的状态必须保留,这样当异常处理完成之后,当前程序可以继续执行。处理器允许多个异常同时发生,它们将会按固定的优先级进行处理。当一个异常出现以后,ARM微处理器会执行以下几步操作:
进入异常处理的基本步骤:
将下一条指令的地址存入相应连接寄存器LR,以便程序在处理异常返回时能从正确的位置重新开始执行。将CPSR复制到相应的SPSR中。根据异常类型,强制设置CPSR的运行模式位。
强制PC从相关的异常向量地址取下一条指令执行,从而跳转到相应的异常处理程序处。如果异常发生时,处理器处于Thumb状态,则当异常向量地址加载入PC时,处理器自动切换到ARM状态。
ARM微处理器对异常的响应过程用伪码可以描述为:
R14_ = Return Link
SPSR_= CPSR
CPSR[4:0] = Exception Mode Number
CPSR[5] = 0 ;当运行于 ARM 工作状态时
If == Reset or FIQ then;当响应 FIQ 异常时,禁止新的 FIQ 异常
CPSR[6] = 1
PSR[7] = 1
PC = Exception Vector Address
异常处理完毕之后,ARM微处理器会执行以下几步操作从异常返回:
将连接寄存器LR的值减去相应的偏移量后送到PC中。
将SPSR复制回CPSR中。
若在进入异常处理时设置了中断禁止位,要在此清除。
................................................................................
BootLoader简介
简单地说,Boot Loader 就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。
Boot Loader 是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的 Boot Loader 几乎是不可能的。尽管如此,我们仍然可以对 Boot Loader 归纳出一些通用的概念来,以指导用户特定的 Boot Loader 设计与实现。
基于 ARM7TDMI core 的 CPU 在复位时通常都从地址 0x00000000 取它的第一条指令。在系统加电后,CPU 将首先执行 Boot Loader 程序。
大多数 Boot Loader 都包含两种不同的操作模式:“启动加载”模式和“下载”模式 :
启动加载(Boot loading)模式:Boot Loader 从目标机上的某个固态存储设备上将操作系统加载到 RAM 中运行,整个过程并没有用户的介入。
下载(Downloading)模式:Boot Loader 将通过串口连接或网络连接等通信手段从主机(Host)下载文件,比如:下载内核映像和根文件系统映像等。
BOOT的一般步骤为:
设置中断向量表
初始化存储设备
初始化堆栈
初始化用户执行环境
呼叫主应用程序
设置中断向量表
ARM要求中断向量表必须放置在从0地址开始,连续8X4字节的空间内。
每当一个中断发生以后,ARM处理器便强制把PC指针置为向量表中对应中断类型的地址值。因为每个中断只占据向量表中1个字的存储空间,只能放置一条ARM指令,使程序跳转到存储器的其他地方,再执行中断处理。
中断向量表的程序实现通常如下表示:
AREA Boot ,CODE, READONLY
ENTRY
B ResetHandler
B UndefHandler
B SWIHandler
B PreAbortHandler
B DataAbortHandler
B
B IRQHandler
B FIQHandler
其中关键字ENTRY是指定编译器保留这段代码,因为编译器可能会认为这是一段亢余代码而加以优化。链接的时候要确保这段代码被链接在0地址处,并且作为整个程序的入口。?
初始化存储设备
存储器端口的接口时序优化是非常重要的,这会影响到整个系统的性能。因为一般系统运行的速度瓶颈都存在于存储器访问,所以存储器访问时序应尽可能的快;而同时又要考虑到由此带来的稳定性问题。
在不同的板子上处理芯片、存储设备以及其接口差异很大,应根据不同的情况来配置。
初始化堆栈
因为ARM有7种执行状态,每一种状态的堆栈指针寄存器(SP)都是独立的。因此,对程序中需要用到的每一种模式都要给SP定义一个堆栈地址。方法是改变状态寄存器内的状态位,使处理器切换到不同的状态,然后给SP赋值。注意:不要切换到User模式进行User模式的堆栈设置,因为进入User模式后就不能再操作CPSR回到别的模式了,可能会对接下去的程序执行造成影响。
这是一段堆栈初始化的代码示例:
mrs r0,cpsr ;读取cpsr寄存器的值
bic r0,r0,#MODEMASK ;把模式位清零
orr r1,r0,#UNDEFMODE|NOINT
msr cpsr_cxsf,r1 ;UndefMode
ldr sp,=UndefStack
其他模式的堆栈的初始化也类似。
堆栈地址的定义一般如下:
^ (_ISR_STARTADDRESS-0x1400)
UserStack # 1024 ;#=field,定义一个数据域,长度为1024
SVCStack # 1024
UndefStack # 1024
AbortStack # 1024
IRQStack # 1024
FIQStack # 0
初始化用户执行环境
一个ARM映像文件由RO,RW和ZI三个段组成,其中RO为代码段,RW是已初始化的全局变量,ZI是未初始化的全局变量。映像一开始总是存储在ROM/Flash里面的,其RO部分即可以在ROM/Flash里面执行,也可以转移到速度更快的RAM中执行;而RW和ZI这两部分是必须转移到可写的RAM里去。所谓应用程序执行环境的初始化,就是完成必要的从ROM到RAM的数据传输和内容清零。
编译器使用下列符号来记录各段的起始和结束地址:
|Image$$RO$$Base| :RO段起始地址
|Image$$RO$$Limit| :RO段结束地址加1
|Image$$RW$$Base| :RW段起始地址
|Image$$RW$$Limit| :ZI段结束地址加1
|Image$$ZI$$Base| :ZI段起始地址
|Image$$ZI$$Limit| :ZI段结束地址加1
这些标号的值是根据链接器中设置的中ro-base和rw-base的设置来计算的。
初始化用户执行环境主要是把RO、RW、ZI三段拷贝到指定的位置。
调用主应用程序
当所有的系统初始化工作完成之后,就需要把程序流程转入主应用程序。最简单的一种情况是:
IMPORT main
B? main
ARM处理器中,引起异常的原因是什么?
第一种为ARM状态,此时处理器执行32位的字对齐的ARM指令;第二种为Thumb状态,此时处理器执行16位的、半字对齐的Thumb指令。在程序的执行过程中,微处理器可以随时在两种工作状态之间切换,并且,处理器工作状态的转变并不影响处理器的工作模式和相应寄存器中的内容。但ARM微处理器在开始执行代码时,应该处于ARM状态。
进入Thumb状态:当操作数寄存器的状态位(位0)为1时,可以采用执行BX指令的方法,使微处理器从ARM状态切换到Thumb状态。此外,当处理器处于Thumb状态时发生异常(如IRQ、FIQ、Undef、Abort、SWI等),则异常处理返回时,自动切换到Thumb状态。
进入ARM状态:当操作数寄存器的状态位为0时,执行BX指令时可以使微处理器从Thumb状态切换到ARM状态。此外,在处理器进行异常处理时,把PC指针放入异常模式链接寄存器中,并从异常向量地址开始执行程序,也可以使处理器切换到ARM状态。
异常和中断 1.ARM 处理器复位后,处理器硬件将进行如下操作: (1) 强制进入管理模式; (2) 强制进入到 ARM 状态; (3) 跳转到绝对地址 PC=0x00000000 出执行; (4) 禁止 IRQ 中断和 FIQ 中断。 复位后 CPSR 中最后 4 位状态为 0011,并且进入管理模式,执行操作系统程序, 一般用做对系统的初始化,然后切换到用户模式,开始执行正常的用户程序,切 换到用户模式可以使用如下程序: MRS R0,CPSR ;读程序状态寄存器 BIC R0,R0,#03 ;把末两位清零 MSR CPSR_c ,R0 ;把修改后的值加载给状态寄存器,切换结束 ADD R1,R2,R3 ;用户程序 2.未定义异常 . ARM 处理器中有很多没有定义的代码,因为 ARM 使用 32 位代码,包含 2 的 31 次幂种。所以 ARM 指令集不能用尽所有的代码。 ARM 的未定义异常有两种情况: (1) 遇到一条无法执行的指令,此指令没有定义; (2) 执行一条协处理器的操作指令,在正常情况下,协处理器应该应答,但是 没有,可能是因为干扰等原因。 当 发 生 此 异 常 时 , 处 理 器 硬 件 响 应 中 断 ,
但是一般情况下是不希望产生异常的,如果是由于干扰引起的异常,那么在 异常中断处理中有一段专门的程序,让程序返回再重新执行该条指令,以判 断异常是否是由干扰引起。 当然也要注意哪种单片机应该使用哪种合适的指令集版本,因为还是约 有差异的,否则某些编译通过的指令也不能执行。 3. 软件中断异常 软件中断异常是由指令 SWI 引起的, 程序执行这一条指令后, 进入异常中断。 处理器响应中断,硬件执行图如下:
软件中断处理程序完成后,使用下列返回指令返回到原中断处: MOVS PC , R14 软件中断异常把程序导入管理模式,而子程序调用属于用户模式。 4. 预取指中断异常 。。。 。。 预取指中断异常和未定义指令异常都是由于不正常的指令国产引起,但是也 有区别: (1) 未定义指令异常是内部异常中断,而他是外部信号引起的异常中断; (2) 他并没有成功地取得一条指令。 他中断返回时,应该执行指令:SUBS PC , R14 , #4 5.数据中止异常 . 。。。 。。。 6.中断请求(IRQ)异常 . 在 ARM 处理器中,有一个输入逻辑 nIRQ 称为中断请求信号,这个输入信
号是由 ARM 处理器外围控制模块(片内)控制,当有满足中断条件的事件发生 时, 外围控制模块向 ARM 处理器发错 IRQ 信号, ARM 处理器进入异常, 使 IRQ 中断是常用的中断,就像 51 系列单片机中定时器中断、串口中断、外部中断等。 中 断 可 以 通 过 CPSR[7] 来 屏 蔽 。 IRQ
完成中断处理后, 程序应该执行下列指令返回到原中断处: SUBS
PC , R14 , #4
7. 快速中断(FIQ)请求异常 在 ARM 处理器中,有一个输入逻辑 nFIQ 称为中断请求信号,这个输入信 号是由 ARM 处理器外围控制模块(片内)控制,当有满足中断条件的事件发生 时, 外围控制模块向 ARM 处理器发错 FIQ 信号, ARM 处理器进入异常。 使 FIQ 中断可以通过 CPSR[6]来屏蔽。
注意:进入异常会引起处理器模式转换。
关于“与基于51系列与基于ARM处理器的控制系统开发有何异同。”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!