网上有关微乐天津麻将有诀窍(详细开挂教程)
网上有关“常用的数据排序算法有哪些,各有什么特点?举例结合一种排序算法并应用数组进行数据排序。”话题很是火热,小编也是针对常用的数据排序算法有哪些,各有什么特点?举例结合一种排序算法并应用数组进行数据排序。寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
您好:手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,咨询加微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的
1.手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,通过添加客服微信
2.咨询软件加微信【】在"设置DD功能DD微信手麻工具"里.点击"开启".
3.打开工具.在"设置DD新消息提醒"里.前两个选项"设置"和"连接软件"均勾选"开启"(好多人就是这一步忘记做了)
4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口)
排序简介
排序是数据处理中经常使用的一种重要运算,在计算机及其应用系统中,花费在排序上的时间在系统运行时间中占有很大比重;并且排序本身对推动算法分析的发展也起很大作用。目前已有上百种排序方法,但尚未有一个最理想的尽如人意的方法,本章介绍常用的如下排序方法,并对它们进行分析和比较。
1、插入排序(直接插入排序、折半插入排序、希尔排序);
2、交换排序(起泡排序、快速排序);
3、选择排序(直接选择排序、堆排序);
4、归并排序;
5、基数排序;
学习重点
1、掌握排序的基本概念和各种排序方法的特点,并能加以灵活应用;
2、掌握插入排序(直接插入排序、折半插入排序、希尔排序)、交换排序(起泡排序、快速排序)、选择排序(直接选择排序、堆排序)、二路归并排序的方法及其性能分析方法;
3、了解基数排序方法及其性能分析方法。
排序(sort)或分类
所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。其确切定义如下:
输入:n个记录R1,R2,…,Rn,其相应的关键字分别为K1,K2,…,Kn。
输出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。
1.被排序对象--文件
被排序的对象--文件由一组记录组成。
记录则由若干个数据项(或域)组成。其中有一项可用来标识一个记录,称为关键字项。该数据项的值称为关键字(Key)。
注意:
在不易产生混淆时,将关键字项简称为关键字。
2.排序运算的依据--关键字
用来作排序运算依据的关键字,可以是数字类型,也可以是字符类型。
关键字的选取应根据问题的要求而定。
例在高考成绩统计中将每个考生作为一个记录。每条记录包含准考证号、姓名、各科的分数和总分数等项内容。若要惟一地标识一个考生的记录,则必须用"准考证号"作为关键字。若要按照考生的总分数排名次,则需用"总分数"作为关键字。
排序的稳定性
当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。
在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的。
注意:
排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。
排序方法的分类
1.按是否涉及数据的内、外存交换分
在排序过程中,若整个文件都是放在内存中处理,排序时不涉及数据的内、外存交换,则称之为内部排序(简称内排序);反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。
注意:
① 内排序适用于记录个数不很多的小文件
② 外排序则适用于记录个数太多,不能一次将其全部记录放人内存的大文件。
2.按策略划分内部排序方法
可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。
排序算法分析
1.排序算法的基本操作
大多数排序算法都有两个基本的操作:
(1) 比较两个关键字的大小;
(2) 改变指向记录的指针或移动记录本身。
注意:
第(2)种基本操作的实现依赖于待排序记录的存储方式。
2.待排文件的常用存储方式
(1) 以顺序表(或直接用向量)作为存储结构
排序过程:对记录本身进行物理重排(即通过关键字之间的比较判定,将记录移到合适的位置)
(2) 以链表作为存储结构
排序过程:无须移动记录,仅需修改指针。通常将这类排序称为链表(或链式)排序;
(3) 用顺序的方式存储待排序的记录,但同时建立一个辅助表(如包括关键字和指向记录位置的指针组成的索引表)
排序过程:只需对辅助表的表目进行物理重排(即只移动辅助表的表目,而不移动记录本身)。适用于难于在链表上实现,仍需避免排序过程中移动记录的排序方法。
3.排序算法性能评价
(1) 评价排序算法好坏的标准
评价排序算法好坏的标准主要有两条:
① 执行时间和所需的辅助空间
② 算法本身的复杂程度
(2) 排序算法的空间复杂度
若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间是O(1),则称之为就地排序(In-PlaceSou)。
非就地排序一般要求的辅助空间为O(n)。
(3) 排序算法的时间开销
大多数排序算法的时间开销主要是关键字之间的比较和记录的移动。有的排序算法其执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。
文件的顺序存储结构表示
#define n l00 //假设的文件长度,即待排序的记录数目
typedef int KeyType; //假设的关键字类型
typedef struct{ //记录类型
KeyType key; //关键字项
InfoType otherinfo;//其它数据项,类型InfoType依赖于具体应用而定义
}RecType;
typedef RecType SeqList[n+1];//SeqList为顺序表类型,表中第0个单元一般用作哨兵
注意:
若关键字类型没有比较算符,则可事先定义宏或函数来表示比较运算。
例关键字为字符串时,可定义宏"#define LT(a,b)(Stromp((a),(b))<0)"。那么算法中"a<b"可用"LT(a,b)"取代。若使用C++,则定义重载的算符"<"更为方便。
按平均时间将排序分为四类:
(1)平方阶(O(n2))排序
一般称为简单排序,例如直接插入、直接选择和冒泡排序;
(2)线性对数阶(O(nlgn))排序
如快速、堆和归并排序;
(3)O(n1+£)阶排序
£是介于0和1之间的常数,即0<£<1,如希尔排序;
(4)线性阶(O(n))排序
如桶、箱和基数排序。
各种排序方法比较
简单排序中直接插入最好,快速排序最快,当文件为正序时,直接插入和冒泡均最佳。
影响排序效果的因素
因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法应综合考虑下列因素:
①待排序的记录数目n;
②记录的大小(规模);
③关键字的结构及其初始状态;
④对稳定性的要求;
⑤语言工具的条件;
⑥存储结构;
⑦时间和辅助空间复杂度等。
不同条件下,排序方法的选择
(1)若n较小(如n≤50),可采用直接插入或直接选择排序。
当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
(2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
(3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;
堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。
若要求排序稳定,则可选用归并排序。但本章介绍的从单个记录起进行两两归并的 排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。
4)在基于比较的排序方法中,每次比较两个关键字的大小之后,仅仅出现两种可能的转移,因此可以用一棵二叉树来描述比较判定过程。
当文件的n个关键字随机分布时,任何借助于"比较"的排序算法,至少需要O(nlgn)的时间。
箱排序和基数排序只需一步就会引起m种可能的转移,即把一个记录装入m个箱子之一,因此在一般情况下,箱排序和基数排序可能在O(n)时间内完成对n个记录的排序。但是,箱排序和基数排序只适用于像字符串和整数这类有明显结构特征的关键字,而当关键字的取值范围属于某个无穷集合(例如实数型关键字)时,无法使用箱排序和基数排序,这时只有借助于"比较"的方法来排序。
若n很大,记录的关键字位数较少且可以分解时,采用基数排序较好。虽然桶排序对关键字的结构无要求,但它也只有在关键字是随机分布时才能使平均时间达到线性阶,否则为平方阶。同时要注意,箱、桶、基数这三种分配排序均假定了关键字若为数字时,则其值均是非负的,否则将其映射到箱(桶)号时,又要增加相应的时间。
(5)有的语言(如Fortran,Cobol或Basic等)没有提供指针及递归,导致实现归并、快速(它们用递归实现较简单)和基数(使用了指针)等排序算法变得复杂。此时可考虑用其它排序。
(6)本章给出的排序算法,输人数据均是存储在一个向量中。当记录的规模较大时,为避免耗费大量的时间去移动记录,可以用链表作为存储结构。譬如插入排序、归并排序、基数排序都易于在链表上实现,使之减少记录的移动次数。但有的排序方法,如快速排序和堆排序,在链表上却难于实现,在这种情况下,可以提取关键字建立索引表,然后对索引表进行排序。然而更为简单的方法是:引人一个整型向量t作为辅助表,排序前令t[i]=i(0≤i<n),若排序算法中要求交换R[i]和R[j],则只需交换t[i]和t[j]即可;排序结束后,向量t就指示了记录之间的顺序关系:
R[t[0]].key≤R[t[1]].key≤…≤R[t[n-1]].key
若要求最终结果是:
R[0].key≤R[1].key≤…≤R[n-1].key
则可以在排序结束后,再按辅助表所规定的次序重排各记录,完成这种重排的时间是O(n)。
常见的几种算法:
①冒泡算法
②选择排序
③插入排序
④快速排序件
认证
开源
平台行业词云分析中有哪几种排序方式
搜索
登录/注册
会员中心
收藏
动态
创作
常见的几种排序方法
从零开始学前端 于 2019-06-01 09:34:54 发布 4965 收藏
分类专栏: 从零开始学前端
版权
从零开始学前端
专栏收录该内容
198 篇文章2 订阅
订阅专栏
常见的几种排序方法
1.背景介绍
在计算机科学与数学中,一个排序算法(英语:Sorting algorithm)是一种能将一串资料依照特定排序方式进行排列的一种算法。 最常用到的排序方式是数值顺序以及字典顺序。有效的排序算法在一些算法(例如搜寻算法与合并算法)中是重要的, 如此这些算法才能得到正确解答。 排序算法也用在处理文字资料以及产生人类可读的输出结果。 基本上,排序算法的输出必须遵守下列两个原则:
输出结果为递增序列(递增是针对所需的排序顺序而言)
输出结果是原输入的一种排列、或是重组
虽然排序算法是一个简单的问题,但是从计算机科学发展以来,在此问题上已经有大量的研究。 更多的新算法仍在不断的被发明。
2.知识剖析
查找和排序算法是算法的入门知识,其经典思想可以用于很多算法当中。因为其实现代码较短,应用较常见。 所以在面试中经常会问到排序算法及其相关的问题。但万变不离其宗,只要熟悉了思想,灵活运用也不是难事。 一般在面试中最常考的是快速排序和归并排序,并且经常有面试官要求现场写出这两种排序的代码。 对这两种排序的代码一定要信手拈来才行。还有插入排序、冒泡排序、堆排序、基数排序、桶排序等。
常见的几种算法:
①冒泡算法
②选择排序
③插入排序
④快速排序
常见问题
问题一:各种排序算法用JavaScript 如何实现?
问题二:各种排序算法的优劣及其应用?
解决方案
问题一:各种排序算法用JavaScript 如何实现?
问题二:各种排序算法的优劣及其应用?
解决方案、
冒泡排序
冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素, 如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有元素再需要交换, 也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。
冒泡排序演算法的运作如下:
比较相邻的元素。如果第一个比第二个大,就交换他们两个。
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个。
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
代码实现:
Array.prototype.bubbleSort = function () {undefined
var i, j, temp;
for (i = 0; i < this.length - 1; i++)
for (j = 0; j < this.length - 1 - i; j++)
if (this[j] > this[j + 1]) {undefined
temp = this[j];
this[j] = this[j + 1];
this[j + 1] = temp;
}
return this;
};
var num = [22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70];//定义一个数组
num.bubbleSort();//数组调用冒泡排序算法
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素, 然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 选择排序的思想其实和冒泡排序有点类似,都是在一次排序后把最小的元素放到最前面。但是过程不同, 冒泡排序是通过相邻的比较和交换。而选择排序是通过对整体的选择。
Array.prototype.selectionSort = function() {undefined
var i, j, min;
var temp;
for (i = 0; i < this.length - 1; i++) {undefined
min = i;
for (j = i + 1; j < this.length; j++)
if (this[min] > this[j])
min = j;
temp = this[min];
this[min] = this[i];
this[i] = temp;
}
return this;
};
var num = [22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70]; //定义一个数组
num.selectionSort(); //数组定义选择排序算法
插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的 工作原理是通过构建有序序列,对于未排序数据, 在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序 (即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位, 为最新元素提供插入空间。
从第一个元素开始,该元素可以认为已经被排序
取出下一个元素,在已经排序的元素序列中从后向前扫描
如果该元素(已排序)大于新元素,将该元素移到下一位置
将新元素插入到该位置后
Array.prototype.insertionSort = function () {undefined
for (var i = 1; i < this.length; i++) {undefined
var temp = this[i];
var j = i - 1;
//如果将赋值放到下一行的for循环内, 会导致在第13行出现j未声明的错误
for (; j >= 0 && this[j] > temp; j–) {undefined
this[j + 1] = this[j];
}
this[j + 1] = temp;
}
return this;
}
var num = [22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70]; //定义一个数组
num.insertionSort(); //数组调用插入排序算法
快速排序
快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort), 一种排序算法, 最早由东尼·霍尔提出。在平均状况下,排序n个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较, 但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n)演算法更快, 因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。
步骤为:
从数列中挑出一个元素,称为"基准"(pivot),
重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(相同的数可以到任一边)。在这个分割结束之后,该基准就处于数列的中间位置。这个称为分割(partition)操作。
递归地(recursively)把小于基准值元素的子数列和大于基准值元素的子数列排序。
递归到最底部时,数列的大小是零或一,也就是已经排序好了。这个演算法一定会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。
Array.prototype.quickSort = function () {undefined
var len = this.length;
if (len <= 1)
return this.slice(0);
var left = [];
var right = [];
var mid = [this[0]];
for (var i = 1; i < len; i++)
if (this[i] < mid[0])
left.push(this[i]);
else
right.push(this[i]);
return left.quickSort().concat(mid.concat(right.quickSort()));
};
var arr = [5, 3, 7, 4, 1, 9, 8, 6, 2];
arr = arr.quickSort();
编码实战
扩展思考
各种排序算法的时间复杂度和空间复杂度
算法优劣评价术语
稳定性:
稳定:如果 a 原本在 b 前面,而 a = b,排序之后 a 仍然在 b 的前面;
不稳定:如果 a 原本在 b 的前面,而 a = b,排序之后 a 可能会出现在 b 的后面;
排序方式:
内排序:所有排序操作都在内存中完成,占用常数内存,不占用额外内存。
外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行,占用额外内存。
复杂度:
时间复杂度: 一个算法执行所耗费的时间。
空间复杂度: 运行完一个程序所需内存的大小。
关于“常用的数据排序算法有哪些,各有什么特点?举例结合一种排序算法并应用数组进行数据排序。”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!